social linkedin box blue 32
social facebook box blue 32
social twitter box blue 32
social facebook box blue 32

iit-advr-logo-v3

Collaborations

Running projects

WALK-MAN  (2013-2017) aims to develop a humanoid robots that can operate in buildings that were damaged following natural and man-made disasters. The robot will demonstrate new skills including dextrous, powerful manipulation, robust balanced locomotion and physical sturdiness. This project targets to significantly advance the current walking and locomotion capabilities of humanoid systems so that the robots will be able to walk in and through cluttered spaces (walking in a crowded environment) and maintain their balance against external disturbances, such as contact and impacts with objects or people. In parallel, WAK-MAN aims to advance the manipulation capabilities of existing humanoids by developing new hand designs that combine robustness and adaptability. This will take advantage of recent developments in mechanical design and materials that allow the creation of less fragile and delicate end-effectors that are capable of grasping/manipulating traditional handtools.[website]

SAPHARI (2011-2015) Recent progress in physical Human‐Robot Interaction (pHRI) research showed in principle that human and robots can actively and safely share a common workspace. Inspired by these results, SAPHARI will perform a fundamental paradigm shift in robot development in the sense that it will place the human at the centre of the entire design. The project will take a big step further along the human‐centered roadmap by addressing all essential aspects of safe, intuitive physical interaction between humans and complex, human‐like robotic systems in a strongly interconnected manner. While encompassing safety issues based on biomechanical analysis, human‐friendly hardware design, and interaction control strategies, the project will also develop and validate key perceptive and cognitive components that enable robots to track, understand and predict human motions in a weakly structured dynamic environment in real‐time. [website]

AMARSI (2009-2014) aims to achieve a qualitative jump toward rich motor behaviour in robotic systems, rigorously following a systematic approach in which novel mechanical systems with passive compliance, control and learning solutions will be integrated. With regards to the mechanical systems with passive compliance the goal is to reduce the distinction between plant and controller that is typical in traditional control engineering and to fully exploit complex body properties, to simplify perception, control and learning and to explore how compliance can be exploited for safer human robot interaction, reduced energy consumption, simplified control, and faster and more aggressive learning. [website]

Past projects

VIACTORS (2009-2012) addresses the development and use of safe, energy-efficient and highly dynamic variable impedance actuation systems which will permit the embodiment of natural characteristics found in biological systems into the structures of the new generation of mechatronic systems. The results of this project will deeply impact applications where successful task completion requires people and robots to collaborate directly in a shared workspace or robots to move autonomously and as efficiently as humans. [website]

ROBOTCUB (2004-2009) is a research initiative dedicated to the realization of embodied cognitive systems and the creation of an advanced robotic platform for neuroscientific study. The two main goals of this project are; the creation of an open hardware/software humanoid robotic platform (iCub) for research in embodied cognition and the advancing of our neural understanding of cognitive systems by exploiting this platform in the study of the development of cognitive capabilities in humanoid robots. [website]

Last Updated on Friday, 18 October 2013 15:48

INFORMATION NOTICE ON COOKIES

IIT's website uses the following types of cookies: browsing/session, analytics, functional and third party cookies. Users can choose whether or not to accept the use of cookies and access the website.
By clicking on further information, the full information notice on the types of cookies used will be displayed and you will be able to choose whether or not to accept cookies whilst browsing on the website.

Try our new site and tell us what you think
Take me there